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The general theory of subduction of eigenvectors between infinite groups is used to derive a 
finite group subduction operator and define the corresponding subduction coefficients. The coupling 
behaviour of these subduced eigenvectors can then be described in terms of 3 F symbols. These symbols, 
defined only in relation to complex basis sets are all fully real and have all phases fixed by the subduction 
operator. They differ from V coefficients in two phase relationships and have the advantage, unlike 
V coefficients, of retaining all the symmetry properties and selection rules of Wigner 3-j symbols. 
Appropriate label systems which render these properties in terms of simple algebras are given for all 
quantizing axes available in Oh. The specific set of 3F symbols for each quantization is determined 
by the orientation of the coordinate axes in the Hamiltonian. The four possible orientations for trigonal 
quantization are examined and the operator chosen which produces eigenvectors with conventional 
conjugate phases and a fully real set of 3F symbols. 
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I. Introduction 

The analysis of the physical properties of tr igonally coordinated metal ions 
has been a source of  difficulty for many  years [1]. In  contrast  to the treatments 
of  the more  fully unders tood  tetragonal  [-2] and digonal I-3] quantizations,  
there still are substantial  differences of opinion concerning the parametr izat ion 
of tr igonal groups, the nature of the eigenvector couplings and their phase re- 
lationships and the correspondence of  various trigonal subgroups with each other. 

In at tempting to formulate  both  an Hermit ian Normal ized  Spherical Ha rmon ic  
Hamil tonian  [3] which can be subjected to subduct ion into trigonal subgroups 
and also in trying to establish componen t  symbols and their algebra of coupling, 
it was found necessary to formulate  a more  general theory of both  subduct ion of 
eigenvectors into subgroups and t ransduct ion into isomorphic  groups. This 
general theory for finite groups can be derived as corollaries of well established 
theorems applicable to cont inuous  groups [4]. By substitution of the appropr ia te  
modulus  of the finite quantizing axis any subduct ion chain [5] can be examined, 
the componen t  symbols derived and the Hermit ian operator  generated [6]. 
The derivation of subduct ion coefficients by s tandard symmetry  adapta t ion 
techniques becomes progressively more  difficult with increasing order  of the 
spherical harmonics.  Compute r  diagonal izat ion methods  also quickly reach 
their limits of precision. An alternative method  of deriving these wave functions 
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is available if some subduction coefficients for the lowest values of l are known. 
These coefficients may be substituted into the subduction equation defining the 
coupling coefficients of the finite group which are themselves independent of 1. 
Using the triangular rules in the subduced 3-j symbols, the symmetry adaptation 
can be extended indefinitely with no ambiguities. 

In order to use this technique however the appropriate set of coupling symbols 
in the finite group must be available. Present tabulations for complex trigonal 
bases cannot be used because the phase conventions were chosen without reference 
to 3-j symbols and with unconventional conjugation. 

Thus in this paper the subduction operators are used to symmetry adapt the 
first four sets of spherical harmonics to a conventional choice of coordinates. 
These eigenvectors are then used to define the desired set of coupling symbols 
which mimic the 3-j symbols and these in turn are used to extend the set of symmetry 
adapted eigenvectors up to l =  6. This process guarantees Hermitian matrices 
and permits the abstraction of chemical and geometric information from the 
spectral parameters described in the next paper. 

2. General Theory of Subduction 

The starting point for a general theory of subduction in finite groups can be 
taken from the branching rules used to subduce continuous groups. Since the 
theory of continuous groups developed by Lie and Weyl is a generalization of 
finite group theory [-4-], a finite group subduction theory can be constructed as 
corollaries for special conditions of the general theorems of continuous groups. 

This theory is constructed upon the behaviour of Casimir's operator 

G=g~~163 (1) 

which is a product of infinitesimal tensor operators and commutes with all other 
operators including the Hamiltonian Xj of the group. In the three-dimensional 
rotation group R 3 it becomes L 2. Since subduction from R 3 to finite groups 
concerns only orbital behaviour it will mimic the branching between groups 
R(2~+ 1) for which Casimir's operator can be written; 

G(R2,+ 1)= 1 /4(2l -  i) -1 ~ IYV, o [JVov 
vo 

(2) 

The eigenvalues of this operator like those of L 2 in R3 are sums of the effects 
of the commuting IV; z and non-commuting ITQ~ IYVo~ operators for each quantum 
number coj specified in the wave function of a representation (co, (/)2 " ' ' )"  For an 
eigenvector v 

t 

G(Rzz+ 1)o = 1 /2(2/ -  1)- 1 ~ (cni + 2 l -  2i + 1)~oio 
i=1 

= o'J(R,R~- ~ )  (3) 
_____K 2 _ _ R  2 
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in which the vector R is independent of the co i. This substitution for the eigenvalues 
of G was made by Racah to simplify derivation of characters of the representations. 
To derive these characters however, the infinitesimal operators corresponding 
to K and R must be integrated to finite form. This is possible because an infinite 
group can be specified either by a single infinite set of infinitesimal operators or 
by an infinite number of sets of finite operators, the latter being conventionally 
used to describe representations. Thus the infinitesimal operator (1 + Wjj3a ~) is 
is integrated to the matrix exp [i W~jaJ"1 in which d j is a finite angular displacement. 
In R(zt+ 1) groups 

a j = O~i+ 1 -~) (4) 

to yield the familiar commutation rules [-7]. The character of any representation 
under any operator of R~2t+ 1) is then the sum over all weights of the representation 
(different values of co~) of the integrated form: 

X ( W  1 W2... Wt) = ~ exp [i(R)jO ~z+ l-r)] 
a 

= ~(M) 

~(K) (5) 
~(R) 

I'  ] ~ exp i/2 ~ (2e)j + 2 l -  2j + 1)0 (l+ l-j) 
j= l  

~ exp i/2 ~ ( 2 / - 2 j +  1)0 (z+l-j) 
j= l  

Here in the integrated form, the operators (R), are specifically defined as those 
of the point group which commute with all elements of the group. In the second 
part of (5) the character is redefined in terms of the Racah vectors of (3) for which 
there exists a simple expansion. This expression in turn can be reformulated to 
a ratio of determinants which is more convenient for calculation [4]. 

The Eq. (5) can be used for subduction between R(2t+l) and R 3 by making 
a simple substitution. In R3; 

that is, the substitution 

exp[, i 
j= l  

0 (j) =jO 

may be made. Thus by calculating the character of a representation of R(2z+l) 
under a group operator W~j with the form of (5) appropriate to R3, the branching 
or subduction of that representation is found; 

exp [i(L + 1/2)0] - exp [ - i(L + 1/2)01 
X ( W  1 W2... W~) = ~L exp[iO/2] -- e x p [ -  i0/2] 

= ~ sin (L + 1/2) 0 

L sin0/2 

(7) 
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As a corrollary, by further specifying in (7) the modulus of any desired quantizing 
axis, (0) the characters of representations of finite groups may be subduced from 
R 3 [8]. These representations are in general reducible and give rise to the familiar 
reduction tables [9]. 

Rather than using the Racah vector operator to project simply the character 
of a representation, using the more complete hypercomplex number projector 
operators, the eigenfunctions forming the bases to the representations can simi- 
larly be obtained from (3) and (4). Each irreducible representation F~ of a point 
group has a corresponding projection operator [10]. 

ei~ = Z Y ~ ( R )  * R (8) 
R 

in which the R are the matrices appropriate to each symmetry operator of the 
group. Any set of functions which form linear combinations under some operator 
of the group form a basis of a representation Fa. In particular such sets of functions 
are available in point groups of higher symmetry. Instead of specifying simply 
the modulus of a quantizing axis of the subgroup however, the behaviour of each 
operator must be imposed upon the functions of the higher group. This can be 
formulated as a specialization of (8): 

Oi~ = ~ F a (Ro)* R o fiR~, Rs (9) 
RG 

in which the projection operators of the generative group G operating on the 
bases of G are forced by the Kronecker delta function to recognize only those 
operators appropriate to the subgroup S. Such an operator is clearly independent 
of the orders of G or S and will be referred to as a Subduction Operator. 

An alternative specialization of(8) is possible. If instead of forcing the operators 
of G to be identical to those of S, the classes of operators Co of G are forced to 
match the equivalent classes Co, of isomorphous group G' then: 

* (10) eij = ~ F~(Ro)iiRobc~ c~, 
RG 

where the bases of G are projected into and onto an isomorphic group G'. Such an 
operator can be called a Transduction Operator. 

3. Subduced Components of Finite Groups 

The branching rules (7) and the subduction of components (9) between 
continuous groups can be used straightforwardly to obtain representations and 
components in subgroups since all finite axes are colinear with any arbitrary Z 
axis. The branching of representations from infinite into finite groups again uses (7) 
since characters are independant of choice of axes. However, the subduction 
operator (9) may only be used after one axis of the finite subgroup is chosen as the 
quantizing axis since axes of all moduli are no longer colinear. This is recognized 
in crystal field theory as a unitary transformation applied to the tensorial sets D L 
of R3 [8, 11]. These transformations mix the components 7o of the generative 
group representations Fo according to the modulus In] of the axis chosen for 
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the (N.S.H.) Hamiltonian H~ of the subgroup. The resulting eigenvectors can 
therefore be specified as a linear combination formed using Subduction Coefficients: 

IrGHSs~s> = ~(FGHs~'GInl l-roUsFs~31F,~Hs'Y,~lnl> (11) 
YG 

which is a symbolism of the conventional symmetry adaptation procedure [8,1 l, 12]. 
However derivation of Subduction Coefficients by conventional techniques 

for l> 3 can be very tedious and inaccurate if attempted by computer diago- 
nalization techniques. An alternative procedure using vector coupling techniques 
is available since it is a property of the infinite group that if one degenerate re- 
presentation is known all the others can be generated. To take advantage of this 
the relationship between the finite and infinite groups must be defined. This 
relationship is governed by the transformation properties of the quantizing 
axis so that the coupling properties of the finite components will be independent 
of the magnitude of the infinite representation from which they are subduced. 

There are available published tabulations of finite group coupling coefficients 
[8, 13]. None of these however are completely appropriate to the present need 
because they have invariably been derived without regard to the coupling properties 
of the components of infinite groups. Our purpose here is to produce a fully real 
set of phase fixed coupling symbols which mimic the behaviour [4] of Wigner 
3-j symbols. In current tabulations [8, 13], imaginary coupling symbols often 
appear and normalization procedures are arbitrary since no external criteria 
from higher groups are used. Clearly imaginary coupling symbols cannot arise 
in a subduction derivation since the subduction procedure using conventional 
choices of axes does not generate any imaginary coefficients when mapped into a 
complex basis set and there are no imaginary 3-j symbols for R 3. 

4. Derivation and Properties of 3F Symbols 

Like the components of infinite group representations, the eigenvectors of 
finite groups couple to give resultant eigenvectors according to definite rules. 
These rules may either be described by tabulations of the coupling coefficients 
themselves or by the more symmetric symbols derived by analogy with 3-j symbols. 
The first of these methods has often been used but leads to very extensive arrays 
of tables [8] containing many redundancies. The second approach was attempted 
by Griffith [t3] and lead to the definition of a V coefficient. In some ways then 
V coefficients mimic 3-j symbols but important differences between them remain. 

The V coefficients are defined under conditions which require a standardized 
ordering of eigenvectors. In this way all phase relationships can be fixed. To 
describe phase changes if components are reordered, an alternating tensor ~p~ 
is defined. If representations are reordered, the V coefficient must be multiplied 
by a further phase factor defined by assigning to each octahedral representation 
a phase defined by its occurance in the symmetric or antisymmetric square. 

These two phase definitions produce a self-consistant set of V coefficients but 
the rules governing their application are very different from those applying 
to 3-j symbols. It is possible however to redefine the V coefficients to mimic 
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3-j symbols by the simple device of introducing the l dependence of reduced 
matrix elements [4] in the infinite group into all the phase conditions. We will 
distinguish this coupling procedure from that of Griffith by naming coefficients 
produced under these conditions 3-F symbols [14] in analogy with 3-j symbols. 

Let (F~, F2 ~, F~ ...) be the components of the irreducible representations of the 
point group Oh. Further, let ( ~  ... ~7,, ~&~ ... ~"~, ~p~ ... qh"~ -.-) be the realization 
of these components in terms of spherical harmonics. Unlike the definition 
of V coefficients, the 3-F symbols will be defined regarding O h as a group subduced 
from R 3 on a specific quantizing axis (C~). Then if H{r is the Hamiltonian of the 
system and/-/~ its realization in spherical harmonics; 

a x fl a ( G  I H~I F2~> = C < ~  ]H hi tp~>. (12) 

The constant C is a metric whose phase is dependent on the order of 11 of the first 
representation and acts as a scaling factor between H~ and H h. Both sides of this 
equation may be expanded in terms of established definitions. The left side yields 
Griffith's definition of V coefficients [13] and the right hand side expands to 
products of subduction coefficients (Smi) and the appropriate 3q symbols; 

(F1 IlHI~llr2) V\c~ fl x / (13) 

= C ~  (Sml),(Smh)(Sm2)(_ l)h_m, / 11 H 12~ 
mi 

It is clear from this expansion that the conventional definition requires the phase 
factor ( -  1) z*-m~ to be absorbed into the value of the V coefficient. This forces 
the reduced matrix element of the finite group to be proportional to the V coef- 
ficient. In infinite groups the reduced matrix element is always defined as being 
proportional to the complete coupling coefficient [4] and not just the 3q symbol. 
From Eq. (12) the finite and infinite group reduced matrix elements are related 
by the metric constant C; 

(F,  II HH I1F2) = C(I~ II Hu I112). (14) 

Substitution of this condition into (13) will permit direct comparison of the two 
established coupling schemes. The comparison is further clarified by substituting 
for the V coefficient, the finite group definition of the coupling coefficient; 

( F1 F2 F31 fi --,- z, 1 v (15) 

Then; 

)c ( F1) ~ v ( ~ l ff 2 ;3 ) = ( ff l O~ ' ff 2 ff 3 fl ' 

= N  a 
ml 

( t = N 2  (SmO* (Sin9 (Sm ) ( -  1) (21 + _ m: 
mi 

N l~,ab c (16) x 111213 " 
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The normalization conditions demand that; 

~y ~ abc 

and fix the absolute value of the normalizing constant N. The sign of N is fixed 
by the sign of C in Eq. (14) which arises from the definition [4] of reduced matrix 
elements of the infinite group; 

N = I N t ( -  1) '1 (18) 

This phase factor (18) was neglected in the original definition of V coefficients. 
Just as the Wigner Eckart phase factor was absorbed into the V coefficient, this 
reduced matrix element phase factor was absorbed into the definition of finite 
group reduced elements. As a result, in some cases the sign of the reduced element 
depends on the nature of the representation in the bra. This leads either to a 
non-Hermitian matrix for real reduced elements or to imaginary reduced elements. 
This in turn implies defining imaginary diagonal V coefficients to obtain real 
observables. 

Inclusion of the sign associated with N in the definition of the coupling symbol 
Eq. (16) ensures both that the finite group reduced elements must be real and 
that the coupling symbols will all be real for the complex basis set regardless of 
the quantization axis. Even though such symbols are formally identical with V 
coefficients for complex evenfold basis sets we will call entities defined by (16) 

/F1/ '2 F3\ 3 F symbols. These will be written simply. [e ~ ? ) without the preceding V by 
[ 

analogy with the form of 3-j symbols. The use of 3 F symbols and their corre- 
sponding real reduced elements greatly simplifies the calculation of magnetic 
properties both under even-fold and odd-fold quantizations. 

5. Eigenvector Nomenclature and Selection Rules in 3 F Symbols 

Like 3-j symbols, the selection rules of combination for finite components 
are reflected in triangular conditions in the 3 F symbols. Numerical substitutions 
can be made for both the representation labels F and the component labels Y 
which make these rules very clear in a simple algebraic form. 

For components, if the numerical substitution is well designed it can define 
the vector coupling properties of all components both within the generative 
group and in all subgroups of a physically significant chain. 

The size of the set numbers needed for this nomenclature is governed by the 
axis modulus In1. The simplest set of numbers fulfilling the requirements of a 
coupling algebra can thus be directly obtained from the Subduction Operator. 
In subducing with an axis C n from R3, all values 

0 < m ~  < n  

form such a set. Unlike the behaviour of infinite sets of~ however the combinatorial 
rules for the ~s must recognize the nature of mapping sums (Ys + ysl) back into 
the set. The algebra can be further complicated by the size of the largest degeneracy 
in the subgroup and whether or not this equals the magnitude of the axial modulus. 
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These difficulties are clearly specific to each group and modulus but need 
only be solved in practice for the cubic systems 0 and T because the components 
of all other cyclic groups of interest can be subduced directly in the appropriate 
chain. The first criterion of a component  nomenclature in the cubic systems is 
the existence of two representations of order 3, T~ and T2. This requires the use 
of six orthogonal component names but since the two representations are iso- 
morphic the names can be written as generalized product functions: 

[T~ aj > lT~ bj > lT~ cj ) 
(19) 

IT 2 ak) IT 2 bk> IT 2 ck> . 

These component names are necessary and sufficient to characterize all components 
of the group but their distribution amongst the other representations depends on 
the axial modulus and must be found using the Subduction Operator. If Inl > 3 
then a, b, and c are all different in magnitude and/or natural sign but for In[ < 3 
depending on the axis, some of a, b, and c become identical [3]. The symbols j and 
k, depending on the quantizing axis act as metrics, each defining a vector space. 
This reflects the definition of components of T and T 2 in finite groups as eigen- 
vectors but these need not be and indeed are not defined in spaces having the 
same commutation relationships. Thus, the vector multiplication within the T~ 
space (j) is not commutative while that within the T 2 space (k) is, Multiplication 
of components from the two spaces is permitted subject to the combining rules 
of the metrics. 

The three cases of greatest interest in crystal field theory are the sets o.f basis 
functions appropriate to C[, C~, and C~ of O h subduced from R 3. The mapping 
onto C[ has been given in one form [2] but the general theory presented here both 
justifies, it and shows that others are possible [15]. Using (9) under C~ the general 
set and two possible specializations, each having its own rules of combination 
can be given as: 

IAlaj> IA 10+> IA 10> 
IA2 ak> IA20 - > IA 22> 
IEaj> Ig0+> Ig0> 
lEak> lEO-> IE2) 
IT lbj> IT 11+> [T11> 
IT1 aj> IT 10+> 17"10) 
rrl cj> Irl - 1 +  > Ir~ - ~> 
[T2bk> IT21 ->  IT 21) 
Ir2ak> IT20-> [T22> 
ITzck> I T 2 - 1 - )  IT2-1>. 

(20) 

In the first form 3 j = + ,  k = - and a relatively simple centrosymmetric set can be 
formed. In the third column [15], ] 0 -  ) is replaced by ]2> which eliminates the 
need for differentiating between j and k but introduces an indeterminacy into 
the sign appropriate to 2. In fact, for modulus (4) 

12> = [ -  2> (21) 
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and it acts like zero. This indeterminacy must be rectified in the coupling coefficients 
as an extra phase factor depending on the number of permutations from an 
agreed standard form. This convention is unnecessary for the first special 
set and arises because a centrosymmetric set of an even number of component 
symbols cannot be constructed using a single natural sign. The second "parity" 
sign used in the first scheme reflects more clearly the fundamentally different 
commutation behaviour of components and yields phase invariant 3 F symbols. 

A similar set of component symbols can be derived for each of the three 
quantizations about C~ axes of the octahedron. Because the modulus is now 
12t and less than the maximum degeneracy the set of six component symbols 
must be reduced to: 

IFaj) IFak) 
(22) 

JFbj) IFbk). 

The association of component symbols with representations depends on the 
choice of C~ axis reference. Again, various substitutions can be made for a, b, j, 
and k, one of which is: 

I t+0+)  I t + 0 - )  
(22) 

I t - 0 + )  I t - 0 - ) .  

This set predicts selection rules essentially from sign conventions at the same time 
as remaining centrosymmetric in component magnitude. In a system using symbols 
0 and l, the natural sign of 1 is again indeterminate. 

The adaption of (19) to trigonal quantization is straightforward. The magnitude 
of a, b, and c are again all different. A natural centrosymmetric system is created by 
selection of the lowest value of m in the linear combinations for each component. 
The metrics j = + and k = - may then be assigned but in a different order to 
that under C[. During descent on a tetragonal chain the distortion parameters are 
subduced [2-1 from the component IE0 + ). In trigonal chains this is replaced by a 
component of T 2 I13-1 implying that metricj must be assigned to this representation. 
The metric k is assigned to T~ to preserve the commutation behaviour and these 
conditions require that both components o f t  carry metricj. The full assignment is: 

IAl aj) = [A10+) 
IA2ak)  = [A z O -  ) 

IE bj) = l~ t + ) 

]Ecj) = [ E - l + )  

IT l bk)  = I T I 1 - )  

IT l a k )  = IT 1 0 = )  

tT l ck)  = IT 1 - 1 - )  

[Tzbj) = I T 2 1 + )  

Ir2aj)  = IT20+ ) 

[r2 cj) = I r e - l + ) .  

(23) 
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A vector algebra can be simply devised from this nomenclature which un- 
ambiguously reproduces the selection rules of the trigonal 3 F symbols. The set 
of these symbols is very similar to the V coefficients for tetragonal quantization 
[ 13] rearranged slightly to reflect the inverted roles of the E and T 2 representation. 

As under C~, the component algebra breaks down into two distinct rules; 

6. Component Magnitude Rule 

The addition of two component values to yield the third must obey the axial 
modulus. Thus; 

1 - 1 = 0  

1 + 0 = + 1 (24) 

1 + 1 = 2 ~ - 1  

- 1 - 1 =  -2 -+1  

in which + 2 is outside the set and must be mapped cyclically back onto 1. 

7. Component Sign Rule 

The manipulation of signs is identical to that proposed [-2] for tetragonal 
systems. The product of the natural and parity signs of any component is called 
the total sign. For a 3 F symbol to exist the product of any two total signs must 
be the negative of the third total sign. 

For neither of the two previously published systems of coefficients [8, 13] 
can such a simple algebra be designed. For these systems the metrics j and k must 
act as real and imaginary operators and in the published trigonal V coefficients 
[13], even this modification requires that some of the postulated V coefficients 
cannot exist. 

The substitution of numerical values for the representation labels is straight- 
forward. In Eq. (16) the 3F symbols are related directly to the 3-j symbols from 
which the finite group functions are subduced. This suggests that the simplest 
substitution for F is the lowest value of l from which F can be realized. This 
scheme makes possible the complete transfer of all infinite group representation 
select-ion rules into the finite group. Thus all the triangular conditions on l in 3-j 
symbols are preserved on F in 3 F symbols. Also retained are the phase relationships 
governing sign changes induced by the permutation of eigenvectors. Neither of 
these phase relationships are retained in a similar substitution into V coefficients 
because of the absorption of phase factors into the value of the corresponding 
reduced matrix element. 

Using 3F symbols definedwith these component and representation labels, 
all differences between weak and strong field quantization schemes are removed. 
This is particularly important in medium field calculations because with either 
3F symbols in a strong field model or 3-j symbols in a weak field model the same 
ordering of eigenvalues under all operators must result. The inadvertant inversion 
of energies between the two models for magnetic operators which can occur 
using V coefficients is eliminated. 
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This correspondence between weak and strong field using 3F symbols, 
which essentially arises in Eq. (16) and (18), is achieved because the subducted 
eigenvectors must display conventional conjugation properties [12a]. The 
eigenvectors used to define V coefficients are conjugated in the opposite phase 
to those defined from the application of a subduction operator. This is also true 
of the more recent tables of coupling coefficients [-8] which were again derived 
from a finite group model. In neither case is there an obvious criterion for the 
selection of this contrastandard definition. 

8. The Normalized Spherical Harmonic Hamiltonian for Trigonal Systems 

The Hamiltonian of a point group is the totally symmetric operator eigenstate. 
Therefore by specifying the axial modulus of the quantizing axis which generates 
the octahedron, Eq. (7) may be used to select the contributing spherical harmonics 
from any l manifold. Substituting the C~ symmetry operator; 

2~ 
sin(l+�89 3 

X(C=a Y~=)= 2re (25) 
sin - -  

6 

Dealing with d electrons [-4], /max = 4 and reduction of this representation [-9, 12] 
shows that A, is contained only in the yO and (Y43 + Y4-3) combinations. 

In setting up the Subduction Operator a further choice of a second symmetry 
operator must be made. By convention the defining symmetry operators in the 
subduction operator will be given in the sequence; 

0~ = E + C, = + C, q, (26) 

in which E is the identity, C~, the quantizing axis and Cq,, the second necessary 
operator. There may in some cases be more than one possible choice of Cq,,. In 
general, these choices can lead to different orientations of coordinate axes and 
by consequence different physically significant chains of subgroups. These choices 
also often lead to different intermediate symmetry situations particularly if a C~ 
quantizing axis is being used. 

Under Cg quantization, the x and y axes are indistinguishable and their 
specific orientation can be chosen for mathematical convenience. However, 
each choice may produce different sign relationships in the operator eigenstate 
associated with the Hamiltonian. 

The conventional choice of coordinate positions places the y axis coincident 
with a C; axis of the octahedron. The resulting subduction operator is; 

0 = E + C~ + C~ y + C(2 x' y, z). (27) 

This operator fixes the relative signs of i1o and (Y~-I14-3) but does not fix the 
sign of i7o itself. If we assume that the nature of the radial parameter is not affected 
by the selection of a quantizing axis then yO must be taken negative. This sign 
inversion is obtained by subjecting the A t operator eigenstate to a unitary trans- 
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formation which projects it onto the C~ yz axis. The resulting trigonally quantized 
Hamiltonian is; 

Ud 3 Ud 
[A,13- 3~3 C~ - ~  C4+ 3---~ C2-3 (28a) 

If the roles of the x and y axes are reversed then (27) yields; 

3 /i c_3 
I A, I; = 3V ~ c ~ + --j--]//~ c4 - ~ 4 (28b) 

An alternative choice of axial positions is possible in which the environments 
of x and y are equivalent. This is achieved by a re/4 rotation from the conventional 
positions and the subduction operator becomes: 

O = E + C~ + QY + C(2 x'z) . (29) 

The resulting Hamiltorlian is; 

C ~  3 - ~ - C 4 +  ~ - - ~  C 4 . (30a) 
31/~ 

If the second symmetry operator is chosen as either C~ y or C~ r the Hamiltonian is: 

q/;63 
IA'I3= 3~33 C ~  ~ - ~  C4 31f3 C4-3" (BOb) 

These four different Hamiltonian operators all yield Hermitian matrices 
when used on a [LMIfl basis set. However, those matrices from Eq. (28) can 
contain only real eigenvalues arising from real eigenvectors. On the other hand 
the operators (30) give Hermitian complex matrices consisting of real diagonal 
and pure imaginary off-diagonal elements. This matrix also yields fully real 
eigenvalues but some of the eigenvectors are imaginary. 

Each quantization implied in (27) and (29) is associated with a set of symmetry 
adapted basis functions which reflect the axis position and phase choices. Thus, 
each of the four Hamiltonian operators (28) and (30) produces a particular set 
of 3F symbols. The sets associated with both operators (28) must themselves 
be fully real while those accompanying the two complex operators (30) contain 
some real and some imaginary coefficients. For this reason, the desired real 
3 F symbols to be developed for trigonal quantization are based on the conventional 
choice of axes and the sign of DQ given in (28a). These symbols are given in 
Table 1 in terms of magnitudes and relative signs. The signs are related to a 
standard order of components; 

(Flr2F3/= (r1 2 3/ (31) 

by the alternating metric E ~  [13] defined only on the components. The metric 
does not imply reordering of the representations. In cases in which two components 
of equal magnitude appear, an extra term may be necessary governed by a Kron- 
ecker ~ (~fl) function. 
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(zr~) 

rl 7"1 r,~ l 
0:/3 V / =~-E~#,  3 

(2 /3 7 ] = - ~ IE~a,I + - -  6(0:,/3) 6(/3,7) 4 

(T2 Ta T2] 1 ~2~ 6(0: /3) 6(/3,J 6 
\0: /3 ~ : 1 /~  ' 

0:/3 v/ = ~(le~#,l + ~ (0:, /3) ~ (/3, J) ~ (v, _+ 1) 4 

/3 ~/ = ~( INa , I  +~(0:,/3) 6(/3,y))6(7,+ 1) 6 

0:/3 v/ = - ~(e~,+v~(0:,/3)a(/3,v))~(~,+ I) 5 

0:/3 v J =-~- ~':~ 5 

EA1E] =--~-2-2]E~,,,5(/3,0) 8 
0:/3 vJ 

EAzE I 1 
0:/3 y /  = ~E~,#v6(/3,0) 7 

a f l y  ] =\a  fl y ]= \0: fl V ] - \ a  fl y ]=~{E,~+b(0:,f l)5(fi ,7)}b(fl ,  O) 

A2 AI A21 = - 6(0:,/3) 6(/3,7) ~ (~/,0) 10 
0:3~1  

The phase relationships governing the reordering of components in these 
symbols is given in the last column in Table 1 as a summation of the values of Ii 
corresponding to the Fi. 

The subduction coefficients for higher l values may now be developed, as 
suggested earlier, using Eq. (16). The fully defined 3F symbols just discussed 
now connect any two known subduction coefficients (Sml) and (Sin2) to any 
unknown (Sm3) for which the triangular conditions of the 3-j symbol are obeyed. 
For  example if the (Smi) for l = 3 are known the (Sma) values for all allowed I values 
in the direct product;  

f x f = s + p + d +  f + o + h + i  

may be determined. The resulting eigenfunctions which retain no ambiguities 
in conjugation properties are given in Table 2 up to l=  6. 

The subduction of these eigenvectors into trigonal subgroups does not alter 
the selection rule behaviour defined here. The only effect that descent in symmetry 
can have on a specific component is to possibly increase the number of selection 
rules which it must obey [2]. The ramifications of this and the parameters arising 
from subduced operators are discussed in the following paper. 
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Appendix. Eigenvalues of Multi-Subduced Representations 

Two or more sets of eigenvectors subduced from manifolds of R a may bear the same octahedral 
representation. This occurs in manifolds 5 and 6 which yield two T 1 and two T 2 representations re- 
spectively. However the application of Eq. (16) yields only one symmetry adapted eigenvector for 
each component label ~,. Moreover, this new linear combination is not invariant under coupling with 
the [At0 q-] operator. It is a linear combination of two orthogonal eigenvectors bearing the same 
component label in the two interacting representations. The conventional sets of basis functions 
for l = 5 or 6 under four fold quantization are those obtained by coupling the subduced eigenvectors 
and their compliments to the octahedral Hamiltonian. As an example, the coupling of the Hamiltonian 
with the IT x 0 + )  linear combination produced by equation (16) for the l=  5 manifold yields; 

1 / ]4 -  0 1 / ~ ' -  4 41 I /T0-  0 1/- i f -  4 4 I 4 4 V~c4+v~(c4+c2 )I-V~-Cs+ V~(Cs+C~ ) ) : l ( C s + C ;  )) (A1) 

which is a simple multiple of the conventional [ 12] eigenvector. The other derived f T 10 + ) component 
is the complement ICs~ 

These reformulated pairs of eigenvectors, unlike those produced directly by the subduction 
equation, can be used with the 3 F symbols to calculate ligand field observables. Of course an infinite 
variety of methods for splitting the subduced linear combinations into orthogonal pairs could be 
postulated. However application of the Hamiltonian is consistant with published data on the four 
fold axis and has therefore been used in this work to derive components of the T 1 (l = 5) and T 2 (1 = 6) 
representations. 
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